

Things that go together

Matt Peters | Greg Bunce NSGIC Annual Conf | September 2020

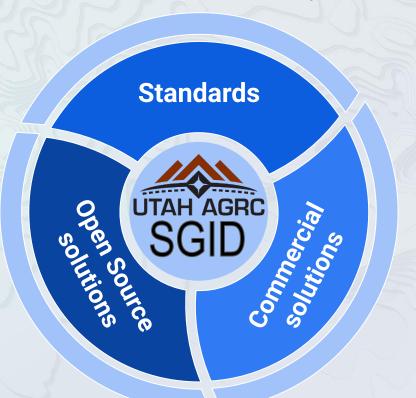
Goals from the Snowbird Conference Presentation....

- Better public access
- Internal-workflow conflicts resolved
- Popularity of data as a service was driving us
- We wanted to focus efforts on data that is being used
- Take care of a bloated state GIS database

What we had...

- SQL ESRI Enterprise Database
 - State network access only
- Combined editing and production DB
- Limited AGOL implementation
- Data download links on website
 - Using Google Drive
- FTP site remnants
- Imagery/basemaps on Google Cloud

AGRC Getting Schooled


Unlock Geospatial Data

This is what we learned from our journey...

- Standards are important
 - o OGC/ISO, FGDC, W3C
- Data Models play a key role
 - NENA; NSDI; DOT
- Accessibility and Interoperability
 - Open Source and Commercial Solutions

AGRC Getting Schooled

This is what we learned from our journey...

- Interoperability (cont'd.)
 - QA/QC
 - Empty geometry
 - Invalid geometry
 - Duplicate data
 - Domains
 - code = description
 - Metadata
 - What standard to use?
 - www.gis.utah.gov/data (data pages)

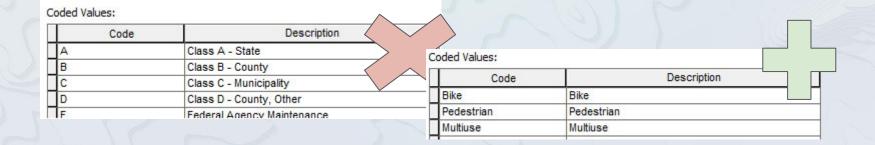
Resources

General Policies

https://gis.utah.gov/about/policy/sgid/

Metadata Guidelines

https://gis.utah.gov/about/policy/metadata/


Data QA/QC

https://github.com/agrc/sweeper

Domain Policy

https://docs.google.com/document/d/12bdtmtv-ZVF9g-IFshbobx

8DbKX9LfbL44HawLjFTVw/edit

This is what we learned from our journey...

- Coordination and Data Aggregation
 - When ingesting from other agencies consider
 - Naming convention
 - Metadata
 - Data Quality (QA/QC)
 - AGOL / Open Data

AGRC Getting Schooled

Moving to the Cloud

- Azure, AWS, GCP, etc. (plenty of options and configurations)
- VPN tunnel
- The comfort of moving out of the state network

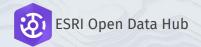
Performance Testing

- Internal testing
- Public beta period (issue tracking)

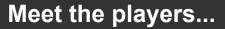
This dataset has a large number of features. Please zoom in to see them.

Optimize Layer Drawing

The dawning of a new age


This is where we ended up - where we are today

- We made the data process more robust
 - Internal only db
- Two public offerings:
 - PostgreSQL/PostGIS
 - Open Data (via HUB)
- The option of adding much more data from agencies


SGID DATA FLOW Win API Win API Grant Control Control

Now we are too cool for school

The importance of organizing tools and processes and procedures around the data lifecycle to stay organized

github.com/agrc/auditor

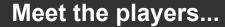
Cambiador github.com/agrc/cambiador

Farm to AGOL

github.com/agrc/warehouse

Forklift github.com/agrc/forklift

How we formed the system


- Project based
- Automation
- Python
- Cloud resources (storage, compute, etc.)

Porter and Conductor

- Porter handles the details
- Conductor does the nagging

github.com/agrc/porter

Removing Data From Anywhere

Deprecation Checklist

Introduce data to the SGID

Creation Checklist

Issue with porter

Something is missing or wrong with an issue template

QUIT YOUR NAGGING!

We are introducing data

The data was or will be added TBD (week of 8/24 or 8/31) to the following areas

- ✓ Internal SGID
- SGID10
- ✓ ArcGIS Online

The data is high quality

- ✓ Sweeper checks have run and passed (@ZachBeck)
- ☐ The minimum requirements for metadata are populated (@gregbunce)
- ✓ The data complies with our domain rules (@ZachBeck)

The data should propagate automatically to

- ✓ ArcGIS Online
- SGID10
- ✓ Open SGID
- Open data
- ✓ SGID.META.ChangeDetection

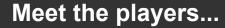
Sweeper and Cambiador

- Sweeper cleans the data (QA/QC)
- Cambiador inspects the data for changes (change detection)

Sweeper

github.com/agrc/sweeper

- Remove duplicates
- Remove Empty Geometries
- Add standard metadata
- Check for minimum address components



Cambiador

github.com/agrc/cambiador

- Checks for data changes
- Hashing (using XXHash)
- Determines what data needs to be updated in public sources

Auditor and 'Farm to AGOL'

- Auditor ensures that all the required elements exist and are accurate before moving the data is moved to AGOL/Open Data
- o Farm to AGOL imports agency data into our in-house enterprise database

Farm to AGOL

github.com/agrc/warehouse

- Title
- Group
- Folder
- Metadata
- Tags

Auditor

github.com/agrc/auditor

- Description note for shelved/static items
- Path to appropriate thumbnail image
- Sets the flag for delete protection
- Sets the flag to 'Allow others to export to different formats', which opens up GDB downloads in Open Data
- Marks the item as Authoritative

Forklift

- Forklift moves the pallets (data) around the warehouse (platforms/geodatabases)
 - Enterprise database to AGOL
 - Enterprise database to PostgreSQL/PostGIS

A python CLI tool for managing and organizing the repetitive tasks involved with keeping remote geodatabases in sync with their sources. In other words, it is a tool to tame your scheduled task nightmare.

So, what's the GISt of all this?

show me the numbers...

Cost

• \$140/mo (state db storage)

Size

• 10GB (db tables)

Usage

 25 to 35 database connections a day

ArcGIS Online

Cost

390 Statewide Datasets

• \$400/mo (state db storage)

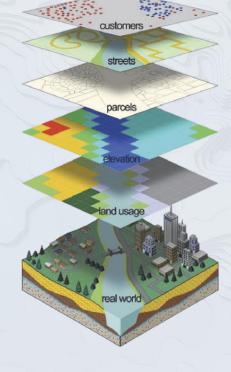
Size

• **16GB** (hosted feature layers)

Usage

30 day average requests

- Address Points
 - o 6,000/day
- County Boundaries
 - o 1,200/day



Framework layers are still king

- "Tier 1" layers
 - Roads, Address Points, Parcels, Political Boundaries, Water
- These layers are "running the business of government"
 - money and revenue is often tied to the inventory and availability of these layers
 - making them desirable to maintain
- Create processes to keep these layers current, complete, clean, available, and easily accessible
- The data we thought was important years ago is the same data that is important today
 - By taking care of these layers, we hit the majority of our users' and needs

Matt Peters | Greg Bunce NSGIC Annual Conf | September 2020